All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Metabolic Tools for Identification of New Mutations of Enzymes Engaged in Purine Synthesis Leading to Neurological Impairment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F19%3A10401687" target="_blank" >RIV/00216208:11110/19:10401687 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bO_6iUy6vf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bO_6iUy6vf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Metabolic Tools for Identification of New Mutations of Enzymes Engaged in Purine Synthesis Leading to Neurological Impairment

  • Original language description

    The cellular pool of purines is maintained by de novo purine synthesis (DNPS), recycling and degradation. Mutations in genes encoding DNPS enzymes cause their substrates to accumulate, which has detrimental effects on cellular division and organism development, potentially leading to neurological impairments. Unspecified neurological symptoms observed in many patients could not be elucidated even by modern techniques. It is presumable that some of these problems are induced by dysfunctions in DNPS enzymes. Therefore, we determined the concentrations of dephosphorylated DNPS intermediates by LC-MS/MS as markers of yet unpublished mutations in PFAS and PAICS genes connected with dysfunctions of carboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS) or phosphoribosylformylglycinamidine synthase (PFAS). We determined the criteria for normal values of metabolites and investigated 1,447 samples of urine and 365 dried blood spots of patients suffering from various forms of neurological impairment. We detected slightly elevated aminoimidazole riboside (AIr) concentrations in three urine samples and a highly elevated 5-formamidoimidazole-4-carboxamide riboside (FGAr) concentration in one urine sample. The accumulation of AIr or FGAr in body fluids can indicate PAICS or PFAS deficiency, respectively, which would be new disorders of DNPS caused by mutations in the appropriate genes. Measurement of DNPS intermediates in patients with neurological symptoms can uncover the cause of serious cellular and functional impairments that are otherwise inaccessible to detection. Further genetic and molecular analysis of these patients should establish the causal mutations for prenatal diagnosis, genetic consultation, and reinforce the DNPS pathway as a therapeutic target.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/NV15-28979A" target="_blank" >NV15-28979A: Prevalence studies of de novo purine synthesis disorders in patients with neurological impairment</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Folia Biologica

  • ISSN

    0015-5500

  • e-ISSN

  • Volume of the periodical

    65

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    6

  • Pages from-to

    152-157

  • UT code for WoS article

    000500271800005

  • EID of the result in the Scopus database

    2-s2.0-85073655978