All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Metabolites of De Novo Purine Synthesis: Metabolic Regulators and Cytotoxic Compounds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F22%3A00567469" target="_blank" >RIV/68378050:_____/22:00567469 - isvavai.cz</a>

  • Alternative codes found

    RIV/00064165:_____/22:10452648 RIV/00216208:11110/22:10452648

  • Result on the web

    <a href="https://www.mdpi.com/2218-1989/12/12/1210" target="_blank" >https://www.mdpi.com/2218-1989/12/12/1210</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/metabo12121210" target="_blank" >10.3390/metabo12121210</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Metabolites of De Novo Purine Synthesis: Metabolic Regulators and Cytotoxic Compounds

  • Original language description

    Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Metabolites

  • ISSN

    2218-1989

  • e-ISSN

    2218-1989

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    1210

  • UT code for WoS article

    000904479700001

  • EID of the result in the Scopus database