All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The effect of inhibition on rate code efficiency indicators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F19%3A10413785" target="_blank" >RIV/00216208:11110/19:10413785 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=m_5j9ueIgS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=m_5j9ueIgS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pcbi.1007545" target="_blank" >10.1371/journal.pcbi.1007545</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The effect of inhibition on rate code efficiency indicators

  • Original language description

    In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer. Author summary: Neurons communicate by firing action potentials, which can be considered as all-or-none events. The classical rate coding hypothesis states that neurons communicate the information about stimulus intensity by altering their firing frequency. Cortical neurons typically receive a signal from many different neurons, which, depending on the synapse type, either depolarize (excitatory input) or hyperpolarize (inhibitory input) the neural membrane. We use a neural model with excitatory and inhibitory synaptic conductances to reproduce in-vivo like activity and investigate how the intensity of presynaptic inhibitory activity affects the neuron&apos;s ability to transmit information through rate code. We reach a counter-intuitive result that increase in inhibition improves the signal-to-noise ratio of the neural response, despite introducing additional noise to the input signal. On the other hand, inhibition also limits the neuronal output range. However, in the end, the actual amount of information transmitted (in bits per energy expended) is remarkably robust to the inhibition level present in the system. Our approach also yields predictions in the form of post-synaptic firing rate histograms, which can be compared with in-vivo recordings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30502 - Other medical science

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS Computational Biology

  • ISSN

    1553-734X

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    e1007545

  • UT code for WoS article

    000507310800018

  • EID of the result in the Scopus database

    2-s2.0-85076448863