All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F23%3A10455936" target="_blank" >RIV/00216208:11110/23:10455936 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11130/23:10455936 RIV/60461373:22340/23:43925926

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gXEvDk7Gie" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gXEvDk7Gie</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms24032724" target="_blank" >10.3390/ijms24032724</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating

  • Original language description

    Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, ca. 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.e., poly(ethylene glycol)-alendronate (PEG-Ale), poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale), and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). All the particles were characterized by TEM, DLS, FTIR, and spectrofluorometer to determine the morphology, hydrodynamic size and ξ-potential, composition, and upconversion luminescence. The degradability/dissolution of UCNPs in water, PBS, DMEM, or artificial lysosomal fluid (ALF) was evaluated using an ion-selective electrochemical method and UV-Vis spectroscopy. The dissolution that was more pronounced in PBS at elevated temperatures was decelerated by polymer coatings. The dissolution in DMEM was relatively small, but much more pronounced in ALF. PMVEMA with multiple anchoring groups provided better protection against particle dissolution in PBS than PEG-Ale and PDMA-Ale polymers containing only one reactive group. However, the cytotoxicity of the particles depended not only on their ability to rapidly degrade, but also on the type of coating. According to MTT, neat UCNPs and UCNP@PMVEMA were toxic for both rat cells (C6) and rat mesenchymal stem cells (rMSCs), which was in contrast to the UCNP@Ale-PDMA particles that were biocompatible. On the other hand, both the cytotoxicity and uptake of the UCNP@Ale-PEG particles by C6 and rMSCs were low, according to MTT assay and ICP-MS, respectively. This was confirmed by a confocal microscopy, where the neat UCNPs were preferentially internalized by both cell types, followed by the UCNP@PMVEMA, UCNP@Ale-PDMA, and UCNP@Ale-PEG particles. This study provides guidance for the selection of a suitable nanoparticle coating with respect to future biomedical applications where specific behaviors (extracellular deposition vs. cell internalization) are expected.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1661-6596

  • e-ISSN

    1422-0067

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    2724

  • UT code for WoS article

    000931901900001

  • EID of the result in the Scopus database

    2-s2.0-85148018751