Computational modeling of ventricular-ventricular interactions suggest a role in clinical conditions involving heart failure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F23%3A10469389" target="_blank" >RIV/00216208:11110/23:10469389 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=77Tw3V2xqo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=77Tw3V2xqo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fphys.2023.1231688" target="_blank" >10.3389/fphys.2023.1231688</a>
Alternative languages
Result language
angličtina
Original language name
Computational modeling of ventricular-ventricular interactions suggest a role in clinical conditions involving heart failure
Original language description
Introduction: The left (LV) and right (RV) ventricles are linked biologically, hemodynamically, and mechanically, a phenomenon known as ventricular interdependence. While LV function has long been known to impact RV function, the reverse is increasingly being realized to have clinical importance. Investigating ventricular interdependence clinically is challenging given the invasive measurements required, including biventricular catheterization, and confounding factors such as comorbidities, volume status, and other aspects of subject variability.Methods: Computational modeling allows investigation of mechanical and hemodynamic interactions in the absence of these confounding factors. Here, we use a threesegment biventricular heart model and simple circulatory system to investigate ventricular interdependence under conditions of systolic and diastolic dysfunction of the LV and RV in the presence of compensatory volume loading. We use the end-diastolic pressure-volume relationship, end-systolic pressure-volume relationship, Frank Starling curves, and cardiac power output as metrics.Results: The results demonstrate that LV systolic and diastolic dysfunction lead to RV compensation as indicated by increases in RV power. Additionally, RV systolic and diastolic dysfunction lead to impaired LV filling, interpretable as LV stiffening especially with volume loading to maintain systemic pressure.Discussion: These results suggest that a subset of patients with intact LV systolic function and diagnosed to have impaired LV diastolic function, categorized as heart failure with preserved ejection fraction (HFpEF), may in fact have primary RV failure. Application of this computational approach to clinical data sets, especially for HFpEF, may lead to improved diagnosis and treatment strategies and consequently improved outcomes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30105 - Physiology (including cytology)
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Physiology
ISSN
1664-042X
e-ISSN
1664-042X
Volume of the periodical
14
Issue of the periodical within the volume
September
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
1231688
UT code for WoS article
001067567700001
EID of the result in the Scopus database
2-s2.0-85171889133