All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F24%3A43926847" target="_blank" >RIV/00216208:11120/24:43926847 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3389/fimmu.2024.1304696" target="_blank" >https://doi.org/10.3389/fimmu.2024.1304696</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fimmu.2024.1304696" target="_blank" >10.3389/fimmu.2024.1304696</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis

  • Original language description

    Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-gamma, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30102 - Immunology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Immunology

  • ISSN

    1664-3224

  • e-ISSN

    1664-3224

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    1304696

  • UT code for WoS article

    001179356300001

  • EID of the result in the Scopus database

    2-s2.0-85187138716