All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F18%3A10375405" target="_blank" >RIV/00216208:11130/18:10375405 - isvavai.cz</a>

  • Alternative codes found

    RIV/00064203:_____/18:10375405

  • Result on the web

    <a href="https://doi.org/10.1038/onc.2017.293" target="_blank" >https://doi.org/10.1038/onc.2017.293</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/onc.2017.293" target="_blank" >10.1038/onc.2017.293</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML

  • Original language description

    In acute myeloid leukemia (AML), specific genomic aberrations induce aberrant methylation, thus directly influencing the transcriptional programing of leukemic cells. Therefore, therapies targeting epigenetic processes are advocated as a promising therapeutic tool for AML treatment. However, to develop new therapies, a comprehensive understanding of the mechanism(s) driving the epigenetic changes as a result of acquired genetic abnormalities is necessary. This understanding is still lacking. In this study, we performed genome-wide CpG-island methylation profiling on pediatric AML samples. Six differentially methylated genomic regions within two genes, discriminating inv(16)(p13;q22) from non-inv(16) pediatric AML samples, were identified. All six regions had a hypomethylated phenotype in inv(16) AML samples, and this was most prominent at the regions encompassing the meningioma (disrupted in balanced translocation) 1 (MN1) oncogene. MN1 expression primarily correlated with the methylation level of the 3&apos; end of the MN1 exon-1 locus. Decitabine treatment of different cell lines showed that induced loss of methylation at the MN1 locus can result in an increase of MN1 expression, indicating that MN1 expression is coregulated by DNA methylation. To investigate this methylation-associated mechanism, we determined the expression of DNA methyltransferases in inv(16) AML. We found that DNMT3B expression was significantly lower in inv(16) samples. Furthermore, DNMT3B expression correlated negatively with MN1 expression in pediatric AML samples. Importantly, depletion of DNMT3B impaired remethylation efficiency of the MN1 exon-1 locus in AML cells after decitabine exposure. These findings identify DNMT3B as an important coregulator of MN1 methylation. Taken together, this study shows that the methylation level of the MN1 exon-1 locus regulates MN1 expression levels in inv(16) pediatric AML. This methylation level is dependent on DNMT3B, thus suggesting a role for DNMT3B in leukemogenesis in inv(16) AML, through MN1 methylation regulation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30204 - Oncology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Oncogene

  • ISSN

    0950-9232

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    107-115

  • UT code for WoS article

    000422625000011

  • EID of the result in the Scopus database

    2-s2.0-85040191774