All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F19%3A10399939" target="_blank" >RIV/00216208:11140/19:10399939 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q0TsewkboA" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=q0TsewkboA</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ceca.2019.02.001" target="_blank" >10.1016/j.ceca.2019.02.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs

  • Original language description

    Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+](i)) remain unknown. We analyzed mechanisms regulating resting [Ca2+](i) in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+](i), indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG(+)) similarly decreased resting [Ca2+](i). When cells were champed at -80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+](i). These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+](i) in rat melanotrophs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Cell Calcium

  • ISSN

    0143-4160

  • e-ISSN

  • Volume of the periodical

    79

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    11-19

  • UT code for WoS article

    000463866200002

  • EID of the result in the Scopus database

    2-s2.0-85061453092