On incremental condition estimators in the 2-norm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F14%3A10195378" target="_blank" >RIV/00216208:11160/14:10195378 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/14:00422614
Result on the web
<a href="http://epubs.siam.org/doi/abs/10.1137/130922872" target="_blank" >http://epubs.siam.org/doi/abs/10.1137/130922872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130922872" target="_blank" >10.1137/130922872</a>
Alternative languages
Result language
angličtina
Original language name
On incremental condition estimators in the 2-norm
Original language description
This paper deals with estimating the condition number of triangular matrices in the Euclidean norm. The two main incremental methods, based on the work of Bischof and the later work of Duff and Vomel, are compared. The paper presents new theoretical results revealing their similarities and differences. As typical in condition number estimation, there is no universal always-winning strategy, but theoretical and experimental arguments show that the clearly preferable approach is the algorithm of Duff andVomel when appropriately applied to both the triangular matrix itself and its inverse. This leads to a highly accurate incremental condition number estimator.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
174-197
UT code for WoS article
000333693300009
EID of the result in the Scopus database
—