All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On incremental condition estimators in the 2-norm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F14%3A10195378" target="_blank" >RIV/00216208:11160/14:10195378 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/14:00422614

  • Result on the web

    <a href="http://epubs.siam.org/doi/abs/10.1137/130922872" target="_blank" >http://epubs.siam.org/doi/abs/10.1137/130922872</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130922872" target="_blank" >10.1137/130922872</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On incremental condition estimators in the 2-norm

  • Original language description

    This paper deals with estimating the condition number of triangular matrices in the Euclidean norm. The two main incremental methods, based on the work of Bischof and the later work of Duff and Vomel, are compared. The paper presents new theoretical results revealing their similarities and differences. As typical in condition number estimation, there is no universal always-winning strategy, but theoretical and experimental arguments show that the clearly preferable approach is the algorithm of Duff andVomel when appropriately applied to both the triangular matrix itself and its inverse. This leads to a highly accurate incremental condition number estimator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    174-197

  • UT code for WoS article

    000333693300009

  • EID of the result in the Scopus database