All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F16%3A10328598" target="_blank" >RIV/00216208:11160/16:10328598 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0300483X16302396" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0300483X16302396</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tox.2016.10.004" target="_blank" >10.1016/j.tox.2016.10.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury

  • Original language description

    Catecholamines may undergo iron-promoted oxidation resulting in formation of reactive intermediates (aminochromes) capable of redox cycling and reactive oxygen species (ROS) formation. Both of them induce oxidative stress resulting in cellular damage and death. Iron chelation has been recently shown as a suitable tool of cardioprotection with considerable potential to protect cardiac cells against catecholamine-induced cardiotoxicity. However, prolonged exposure of cells to classical chelators may interfere with physiological iron homeostasis. Prochelators represent a more advanced approach to decrease oxidative injury by forming a chelating agent only under the disease-specific conditions associated with oxidative stress. Novel prochelator (lacking any iron chelating properties) BHAPI [(E)-N'- (1-(2-((4-(4,4,5,5-tetramethyl-1,2,3-dioxoborolan-2-yl)benzyl)oxy)phenyl)ethylidene) isonicotinohydrazide] is converted by ROS to active chelator HAPI with strong iron binding capacity that efficiently inhibits iron-catalyzed hydroxyl radical generation. Our results confirmed redox activity of oxidation products of catecholamines isoprenaline and epinephrine, that were able to activate BHAPI to HAPI that chelates iron ions inside H9c2 cardiomyoblasts. Both HAPI and BHAPI were able to efficiently protect the cells against intracellular ROS formation, depletion of reduced glutathione and toxicity induced by catecholamines and their oxidation products. Hence, both HAPI and BHAPI have shown considerable potential to protect cardiac cells by both inhibition of deleterious catecholamine oxidation to reactive intermediates and prevention of ROS-mediated cardiotoxicity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    FR - Pharmacology and apothecary chemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Toxicology

  • ISSN

    0300-483X

  • e-ISSN

  • Volume of the periodical

    371

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    17-28

  • UT code for WoS article

    000390517100004

  • EID of the result in the Scopus database

    2-s2.0-84994509657