All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F18%3A10388433" target="_blank" >RIV/00216208:11160/18:10388433 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S2352554117300487" target="_blank" >http://www.sciencedirect.com/science/article/pii/S2352554117300487</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scp.2017.11.001" target="_blank" >10.1016/j.scp.2017.11.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures

  • Original language description

    How does the variation in the ionic nature of ionic liquids (ILs) affect their antimicrobial properties? To answer this question with a direct connection to the molecular structure of ILs is integral for the design of new task specific ILs. The effect of ionic nature can be investigated through a comparison between analogous aprotic and protic ILs. However, while there have been extensive studies on the toxicology of both aprotic and protic ILs, the number of different structures and procedures employed makes quantitative comparison impossible. To address this, a series of analogous N,N,N-trimethylethanolammonium (cholinium) derived aprotic ILs (AILs) and N,N-dimethylethanolammonium derived protic ILs (PILs) with acetate, hexanoate, D,L-mandelate and 3-ethoxypropionate anions were prepared and characterised. All ILs were subsequently screened for antimicrobial activity against eight bacterial and twelve fungi strains. From the antimicrobial activity screening, little difference was found between the toxicities of AILs and PILs with shorter chains terminating in hydroxyl functional groups (e.g cholinium hexanoate and N,N-dimethylethanolammonium hexanoate). Variations between anion structure demonstrated slightly higher toxicities for more lipophilic anions. Antimicrobial activities were found to significantly increase for ILs with a long ether chain functional groups in the cation, due to the enhanced surfactant properties of these long chain cations. The importance of toxicity screening of analogous series of AILs and PILs as part of a future comprehensive biodegradation analysis has also been proposed based on postulated IL breakdown pathways.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sustainable Chemistry and Pharmacy

  • ISSN

    2352-5541

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    17-26

  • UT code for WoS article

    000426418900003

  • EID of the result in the Scopus database

    2-s2.0-85036662972