All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Metabolism of Scoparone in Experimental Animals and Humans

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F19%3A10409937" target="_blank" >RIV/00216208:11160/19:10409937 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aVrXqOVHIN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aVrXqOVHIN</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1055/a-0835-2301" target="_blank" >10.1055/a-0835-2301</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Metabolism of Scoparone in Experimental Animals and Humans

  • Original language description

    Scoparone, a major constituent of the Chinese herbal medicine Yin Chen Hao, expresses beneficial effects in experimental models of various diseases. The intrinsic doses and effects of scoparone are dependent on its metabolism, both in humans and animals. We evaluated in detail the metabolism of scoparone in human, mouse, rat, pig, dog, and rabbit liver microsomes in vitro and in humans in vivo. Oxidation of scoparone to isoscopoletin via 6-O-demethylation was the major metabolic pathway in liver microsomes from humans, mouse, rat, pig and dog, whereas 7-O-demethylation to scopoletin was the main reaction in rabbit. The scoparone oxidation rates in liver microsomes were 0.8-1.2 mu mol/(min*g protein) in mouse, pig, and rabbit, 0.2-0.4 mu mol/(min*g protein) in man and dog, and less than 0.1 mu mol/(min*g) in rat. In liver microsomes of all species, isoscopoletin was oxidized to 3-[4-methoxy-rho-(3, 6)-benzoquinone]-2-propenoate and esculetin, which was formed also in the oxidation of scopoletin. Human CYP2A13 exhibited the highest rate of isoscopoletin and scopoletin oxidation, followed by CYP1A1 and CYP1A2. Glucuronidation of isoscopoletin and scopoletin was catalyzed by the human UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B17. Dog was most similar to man in scoparone metabolism. Isoscopoletin glucuronide and sulfate conjugates were the major scoparone in vivo metabolites in humans, and they were completely excreted within 24 h in urine. Scoparone and its metabolites did not activate key nuclear receptors regulating CYP and UGT enzymes. These results outline comprehensively the metabolic pathways of scoparone in man and key preclinical animal species.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Planta Medica

  • ISSN

    0032-0943

  • e-ISSN

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    453-464

  • UT code for WoS article

    000466805400002

  • EID of the result in the Scopus database

    2-s2.0-85064405175