Comprehensive two-step supercritical fluid extraction for green isolation of volatiles and phenolic compounds from plant material
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F24%3A10487655" target="_blank" >RIV/00216208:11160/24:10487655 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~f7XBHt0qp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~f7XBHt0qp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4gc00371c" target="_blank" >10.1039/d4gc00371c</a>
Alternative languages
Result language
angličtina
Original language name
Comprehensive two-step supercritical fluid extraction for green isolation of volatiles and phenolic compounds from plant material
Original language description
Extraction of compounds with different physicochemical properties from a complex matrix usually involves several individual steps and requires large volumes of organic solvents. In this pioneering study, we propose a comprehensive two-step supercritical fluid extraction using carbon dioxide, ethanol, and water. This novel approach allows the extraction of non-polar and polar analytes within one run in two consecutive steps. Indeed, the first step with a dominant amount of CO2 with only 2% cosolvent allowed the selective extraction of non-polar volatile terpenes only in 20 min. The conditions were then automatically switched. Increasing the cosolvent volume in the extraction solvent up to 44% (v/v) resulted in the extraction of more polar compounds, including flavonoids and phenolic acids, in 60 min. Importantly, switching the supercritical fluid extraction (SFE) conditions does not require any manual intervention but results in two separate fractions containing target compounds with distinctly different physicochemical properties. The novel method was verified in terms of repeatability, accuracy, precision, and greenness. Two-step SFE was applied to seven plant species differing in volatile terpenes and phenolic profiles. The results proved that this concept is suitable for the analysis of complex plant samples. In addition, it enables a reduction in the toxic solvents consumption, extraction time, and manual intervention required for traditional extraction approaches when isolating different groups of metabolites.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30104 - Pharmacology and pharmacy
Result continuities
Project
<a href="/en/project/EF16_019%2F0000841" target="_blank" >EF16_019/0000841: Efficiency and safety improvement of current drugs and nutraceuticals: advanced methods - new challenges</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Green Chemistry
ISSN
1463-9262
e-ISSN
1463-9270
Volume of the periodical
26
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
6480-6489
UT code for WoS article
001209557300001
EID of the result in the Scopus database
2-s2.0-85191863402