Large Cardinals and the Continuum Hypothesis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F13%3A10173337" target="_blank" >RIV/00216208:11210/13:10173337 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Large Cardinals and the Continuum Hypothesis
Original language description
This is a survey paper which discusses the impact of large cardinals on provability of the Continuum Hypothesis (CH). It was Gödel who first suggested that perhaps "strong axioms of infinity" (large cardinals) could decide interesting set-theoretical statements independent over ZFC, such as CH. This hope proved largely unfounded for CH - one can show that virtually all large cardinals defined so far do not affect the status of CH. It seems to be an inherent feature of large cardinals that they do not determine properties of sets low in the cumulative hierarchy if such properties can be forced to hold or fail by small forcings.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Carolinae. Philosophica et Historica
ISSN
0567-8293
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
35-52
UT code for WoS article
—
EID of the result in the Scopus database
—