All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On some axioms deciding the Continuum Hypothesis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F17%3A10362095" target="_blank" >RIV/00216208:11210/17:10362095 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On some axioms deciding the Continuum Hypothesis

  • Original language description

    The continuum hypothesis (CH) is the claim that any subset of the real numbers is at most countable or has the same size as the set of all real numbers. By the results of Godel and Cohen this hypothesis is independent over ZFC if ZFC is consistent. In the talk we will focus on a couple of attempts to decide CH and also GCH (generalized continuum hypothesis) in the sense of finding a natural axiom which decides CH or GCH over ZFC. We will mention Shelah&apos;s and Woodin&apos;s positions and discuss them in the context of one particular axiom: the tree property at aleph_2, a combinatorial property of cardinals, which decides CH negatively.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů