On some axioms deciding the Continuum Hypothesis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F17%3A10362095" target="_blank" >RIV/00216208:11210/17:10362095 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On some axioms deciding the Continuum Hypothesis
Original language description
The continuum hypothesis (CH) is the claim that any subset of the real numbers is at most countable or has the same size as the set of all real numbers. By the results of Godel and Cohen this hypothesis is independent over ZFC if ZFC is consistent. In the talk we will focus on a couple of attempts to decide CH and also GCH (generalized continuum hypothesis) in the sense of finding a natural axiom which decides CH or GCH over ZFC. We will mention Shelah's and Woodin's positions and discuss them in the context of one particular axiom: the tree property at aleph_2, a combinatorial property of cardinals, which decides CH negatively.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů