On strong forms of reflection in set theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F16%3A10336145" target="_blank" >RIV/00216208:11210/16:10336145 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/malq.201400047" target="_blank" >http://dx.doi.org/10.1002/malq.201400047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/malq.201400047" target="_blank" >10.1002/malq.201400047</a>
Alternative languages
Result language
angličtina
Original language name
On strong forms of reflection in set theory
Original language description
In this paper we review the most common forms of reflection and introduce a new form which we call emph{sharp-generated reflection}. We argue that sharp-generated reflection is the strongest form of reflection which can be regarded as a natural generalization of the Levy reflection theorem. As an application we formulate the principle emph{sharp-maximality} with the corresponding hypothesis IMH$^#$. IMH$^#$ is an analogue of the IMH (Inner Model Hypothesis which is compatible with the existence of large cardinals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
52-58
UT code for WoS article
000371669800007
EID of the result in the Scopus database
—