All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On strong forms of reflection in set theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F16%3A10336145" target="_blank" >RIV/00216208:11210/16:10336145 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/malq.201400047" target="_blank" >http://dx.doi.org/10.1002/malq.201400047</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/malq.201400047" target="_blank" >10.1002/malq.201400047</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On strong forms of reflection in set theory

  • Original language description

    In this paper we review the most common forms of reflection and introduce a new form which we call emph{sharp-generated reflection}. We argue that sharp-generated reflection is the strongest form of reflection which can be regarded as a natural generalization of the Levy reflection theorem. As an application we formulate the principle emph{sharp-maximality} with the corresponding hypothesis IMH$^#$. IMH$^#$ is an analogue of the IMH (Inner Model Hypothesis which is compatible with the existence of large cardinals.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Logic Quarterly

  • ISSN

    0942-5616

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    7

  • Pages from-to

    52-58

  • UT code for WoS article

    000371669800007

  • EID of the result in the Scopus database