All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towers in Filters, Cardinal Invariants and Luzin Type Families

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F18%3A10314909" target="_blank" >RIV/00216208:11210/18:10314909 - isvavai.cz</a>

  • Result on the web

    <a href="https://arxiv.org/abs/1605.04735" target="_blank" >https://arxiv.org/abs/1605.04735</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2017.52" target="_blank" >10.1017/jsl.2017.52</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towers in Filters, Cardinal Invariants and Luzin Type Families

  • Original language description

    We investigate which filters on ω can contain towers, that is, a modulo finite descending sequence without any pseudointersection (in ). We prove the following results: (1)Many classical examples of nice tall filters contain no towers (in ZFC). (2)It is consistent that tall analytic P-filters contain towers of arbitrary regular height (simultaneously for many regular cardinals as well). (3)It is consistent that all towers generate nonmeager filters (this answers a question of P. Borodulin-Nadzieja and D. Chodounský), in particular (consistently) Borel filters do not contain towers. (4)The statement &quot;Every ultrafilter contains towers.&quot; is independent of ZFC (this improves an older result of K. Kunen, J. van Mill, and C. F. Mills). Furthermore, we study many possible logical (non)implications between the existence of towers in filters, inequalities between cardinal invariants of filters ( , , , and ), and the existence of Luzin type families (of size ), that is, if is a filter then is an -Luzin family if is countable for every .

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF17-33849L" target="_blank" >GF17-33849L: Filters, Ultrafilters and Connections with Forcing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Volume of the periodical

    83

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    50

  • Pages from-to

    1013-1062

  • UT code for WoS article

    000448035800008

  • EID of the result in the Scopus database

    2-s2.0-85055563014