All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

There is no bound on Borel classes of graphs in the Luzin-Novikov theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456401" target="_blank" >RIV/00216208:11320/22:10456401 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eI7ylG_.kn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eI7ylG_.kn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/dm831-11-2021" target="_blank" >10.4064/dm831-11-2021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    There is no bound on Borel classes of graphs in the Luzin-Novikov theorem

  • Original language description

    We show that for every ordinal alpha E [1, omega 1) there is a closed set F* C 2&quot; x omega&quot; such that for every x E 2&quot; the section {y E omega&quot;; (x, y) E F*} is a two-point set and F* cannot be covered by countably many graphs B(n) C 2&quot; x omega&quot; of functions of the variable x E 2&quot; such that each B(n) is in the additive Borel class sigma 0a. This rules out the possibility to have a quantitative version of the Luzin-Novikov theorem. The construction is a modification of the method of Harrington, who invented it to show that there exists a countable pi 01 set in omega&quot; containing a nonarithmetic singleton. By another application of the same method we get closed sets excluding a quantitative version of the Saint Raymond theorem on Borel sets with sigma-compact sections.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA15-08218S" target="_blank" >GA15-08218S: Theory of real functions and its applications in geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Dissertationes Mathematicae

  • ISSN

    0012-3862

  • e-ISSN

    1730-6310

  • Volume of the periodical

    576

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    77

  • Pages from-to

    1-77

  • UT code for WoS article

    000788088500001

  • EID of the result in the Scopus database

    2-s2.0-85140628817