All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On sets where lip f is finite

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405505" target="_blank" >RIV/00216208:11320/19:10405505 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EP3ifwRSz~" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EP3ifwRSz~</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm170820-26-5" target="_blank" >10.4064/sm170820-26-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On sets where lip f is finite

  • Original language description

    Given a function f : R -&gt; R, the so-called &quot;little lip&quot; function lip f is defined as follows: lip f(x) = lim inf(r -&gt; 0) sup(|x - y| &lt;= r) |f(y) - f(x)| / r. We show that if f is continuous on R, then the set where lip f is infinite is a countable union of countable intersections of closed sets (that is, an F-sigma delta set). On the other hand, given a countable union E of closed sets, we construct a continuous function f such that lip f is infinite exactly on E. A further result is that, for a typical continuous function f on the real line, lip f vanishes almost everywhere.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

  • Volume of the periodical

    249

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    26

  • Pages from-to

    33-58

  • UT code for WoS article

    000477075700002

  • EID of the result in the Scopus database

    2-s2.0-85076244809