All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dimension of images and graphs of little Lipschitz functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475610" target="_blank" >RIV/00216208:11320/23:10475610 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.8ejxeoocr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.8ejxeoocr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/fm147-12-2022" target="_blank" >10.4064/fm147-12-2022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dimension of images and graphs of little Lipschitz functions

  • Original language description

    A mapping f : X -&gt; Y between metric spaces is termed little Lipschitz if the function lip f : X -&gt; [0, infinity], lip f (x) = lim inf(r -&gt; 0) diam f(B(x, r))/r, is finite at every point. We prove that for each s &gt; 0 the little Lipschitz mapping f satisfies the inequality H-s (f(X)) &lt;= integral(X) (lip f)(s) dP(s) as long as {lip f = 0} is of sigma-finite measure P-s, where H-s and P-s denote the s-dimensional Hausdorff and packing measures, respectively. We derive a dimensional in-equality for little Lipschitz mappings dim(H) f (X) &lt;= dim(H) f &lt;= (dim) over bar (P) X and we provide a few examples that show that these inequalities are the best possible.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fundamenta Mathematicae

  • ISSN

    0016-2736

  • e-ISSN

    1730-6329

  • Volume of the periodical

    262

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    34

  • Pages from-to

    37-70

  • UT code for WoS article

    000970548700001

  • EID of the result in the Scopus database

    2-s2.0-85171461608