All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The tree property and the continuum function below aleph_omega

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F18%3A10325736" target="_blank" >RIV/00216208:11210/18:10325736 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/malq.201600028" target="_blank" >https://doi.org/10.1002/malq.201600028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/malq.201600028" target="_blank" >10.1002/malq.201600028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The tree property and the continuum function below aleph_omega

  • Original language description

    We say that a regular cardinal $kappa$, $kappa&gt; aleph_0$, has the tree property if there are no $kappa$-Aronszajn trees; we say that $kappa$ has the weak tree property if there are no special $kappa$-Aronszajn trees. Starting with infinitely many weakly compact cardinals, we show that the tree property at every even cardinal $aleph_{2n}$, $0aleph_{2n+1}$, $n&lt;omega$. Next, starting with infinitely many Mahlo cardinals, we show that the weak tree property at every cardinal $aleph_n$, $1 &lt; n &lt;omega$, is consistent with an arbitrary continuum function which satisfies $2^{aleph_n} &gt; aleph_{n+1}$, $n&lt;omega$. Thus the tree property has no provable effect on the continuum function below $aleph_omega$ except for the trivial requirement that the tree property at $kappa^{++}$ implies $2^kappa&gt;kappa^+$ for every infinite $kappa$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF15-34700L" target="_blank" >GF15-34700L: The continuum, forcing and large cardinals</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Logic Quarterly

  • ISSN

    0942-5616

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    64

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    14

  • Pages from-to

    89-102

  • UT code for WoS article

    000431504500007

  • EID of the result in the Scopus database

    2-s2.0-85045416027