Easton's theorem for the tree property below aleph_omega
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F21%3A10436978" target="_blank" >RIV/00216208:11210/21:10436978 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=u5et-Uc-hT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=u5et-Uc-hT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2021.102974" target="_blank" >10.1016/j.apal.2021.102974</a>
Alternative languages
Result language
angličtina
Original language name
Easton's theorem for the tree property below aleph_omega
Original language description
Starting with infinitely many supercompact cardinals, we show that the tree property at every cardinal aleph(n), 1 < n < omega, is consistent with an arbitrary continuum function below aleph(omega) which satisfies 2(aleph n) > aleph(n+1), n < omega Thus the tree property has no provable effect on the continuum function below aleph(omega) except for the restriction that the tree property at kappa(++) implies 2(kappa) > kappa(+) for every infinite kappa. (C) 2021 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GF19-29633L" target="_blank" >GF19-29633L: Compactness principles and combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Volume of the periodical
172
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
102974
UT code for WoS article
000651906100005
EID of the result in the Scopus database
2-s2.0-85104068814