All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

INDESTRUCTIBILITY OF THE TREE PROPERTY

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F20%3A10422936" target="_blank" >RIV/00216208:11210/20:10422936 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N-Wt2GNq-D" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N-Wt2GNq-D</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2019.61" target="_blank" >10.1017/jsl.2019.61</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    INDESTRUCTIBILITY OF THE TREE PROPERTY

  • Original language description

    In the first part of the article, we show that if omega = &lt;= kappa &lt; lambda are cardinals, kappa(&lt;kappa) = kappa, and lambda is weakly compact, then in V[M(kappa, lambda)] the tree property at lambda = (kappa(++))(V[M(kappa,lambda)]) is indestructible under all kappa(+)-cc forcing notions which live in V[Add(kappa, lambda)], where Add(kappa, lambda) is the Cohen forcing for adding lambda-many subsets of kappa and M(kappa, lambda) is the standard Mitchell forcing for obtaining the tree property at lambda = (kappa(++))(V[M(kappa, lambda)]). This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that lambda is supercompact and generalize the construction and obtain a model V*, a generic extension of V, in which the tree property at (kappa(++))(V)* is indestructible under all kappa(+)-cc forcing notions living in V[Add(kappa, lambda)], and in addition under all forcing notions living in V* which are kappa(+)-closed and &quot;liftable&quot; in a prescribed sense (such as kappa(++)-directed closed forcings or well-met forcings which are kappa(++)-closed with the greatest lower bounds).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF19-29633L" target="_blank" >GF19-29633L: Compactness principles and combinatorics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    467-485

  • UT code for WoS article

    000525578300021

  • EID of the result in the Scopus database

    2-s2.0-85083454873