Small u(kappa) at singular kappa with compactness at kappa(++)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F22%3A10440992" target="_blank" >RIV/00216208:11210/22:10440992 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kmp2anbl57" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kmp2anbl57</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-021-00776-5" target="_blank" >10.1007/s00153-021-00776-5</a>
Alternative languages
Result language
angličtina
Original language name
Small u(kappa) at singular kappa with compactness at kappa(++)
Original language description
We show that the tree property, stationary reflection and the failure of approachability at kappa(++) are consistent with u(kappa) = kappa(+) < 2(kappa), where. is a singular strong limit cardinal with the countable or uncountable cofinality. As a by-product, we show that if lambda is a regular cardinal, then stationary reflection at lambda(+) is indestructible under all lambda-cc forcings (out of general interest, we also state a related result for the preservation of club stationary reflection).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GF19-29633L" target="_blank" >GF19-29633L: Compactness principles and combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
1432-0665
Volume of the periodical
61
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
33-54
UT code for WoS article
000655417600001
EID of the result in the Scopus database
2-s2.0-85107122347