All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Missing Categorical Data Imputation and Individual Observation Level Imputation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F14%3A10282346" target="_blank" >RIV/00216208:11310/14:10282346 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31140/14:00045558

  • Result on the web

    <a href="http://dx.doi.org/10.11118/actaun201462061527" target="_blank" >http://dx.doi.org/10.11118/actaun201462061527</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.11118/actaun201462061527" target="_blank" >10.11118/actaun201462061527</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Missing Categorical Data Imputation and Individual Observation Level Imputation

  • Original language description

    Traditional missing data techniques of imputation schemes focus on prediction of the missing value based on other observed values. In the case of continuous missing data the imputation of missing values often focuses on regression models. In the case ofcategorical data, usual techniques are then focused on classification techniques which sets the missing value to the "most likely" category. This however leads to overrepresentation of the categories which are in general observed more often and hence canlead to biased results in many tasks especially in the case of presence of dominant categories. We present original methodology of imputation of missing values which results in the most likely structure (distribution) of the missing data conditional onthe observed values. The methodology is based on the assumption that the categorical variable containing the missing values has multinomial distribution. Values of the parameters of this distribution are than estimated using the multinomi

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    AO - Sociology, demography

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP404%2F12%2F0883" target="_blank" >GAP404/12/0883: Cohort life tables for the Czech Republic: data, biometric functions, and trends</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis

  • ISSN

    1211-8516

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    8

  • Pages from-to

    1527-1534

  • UT code for WoS article

  • EID of the result in the Scopus database