Missing Categorical Data Imputation and Individual Observation Level Imputation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F14%3A10282346" target="_blank" >RIV/00216208:11310/14:10282346 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31140/14:00045558
Result on the web
<a href="http://dx.doi.org/10.11118/actaun201462061527" target="_blank" >http://dx.doi.org/10.11118/actaun201462061527</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201462061527" target="_blank" >10.11118/actaun201462061527</a>
Alternative languages
Result language
angličtina
Original language name
Missing Categorical Data Imputation and Individual Observation Level Imputation
Original language description
Traditional missing data techniques of imputation schemes focus on prediction of the missing value based on other observed values. In the case of continuous missing data the imputation of missing values often focuses on regression models. In the case ofcategorical data, usual techniques are then focused on classification techniques which sets the missing value to the "most likely" category. This however leads to overrepresentation of the categories which are in general observed more often and hence canlead to biased results in many tasks especially in the case of presence of dominant categories. We present original methodology of imputation of missing values which results in the most likely structure (distribution) of the missing data conditional onthe observed values. The methodology is based on the assumption that the categorical variable containing the missing values has multinomial distribution. Values of the parameters of this distribution are than estimated using the multinomi
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AO - Sociology, demography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP404%2F12%2F0883" target="_blank" >GAP404/12/0883: Cohort life tables for the Czech Republic: data, biometric functions, and trends</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
1527-1534
UT code for WoS article
—
EID of the result in the Scopus database
—