Categorical data imputation under MAR missing scheme
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F13%3A10146019" target="_blank" >RIV/00216208:11310/13:10146019 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Categorical data imputation under MAR missing scheme
Original language description
Traditional missing data techniques of imputation of the MAR (missing at random) schemes focus on prediction of the missing value based on other observed values. In the case of continuous missing data the imputation of missing values often focuses on regression models. In the case of categorical data, usual techniques are then focused on classification techniques which sets the missing value to the 'most likely' category. This however leads to overrepresentation of the categories which are in general observed more often and hence can lead to biased results in many tasks especially in the case of presence of dominant categories. We present original methodology of imputation of missing values which results in the most likely structure (distribution) of the missing data conditional on the observed values. The methodology is based on the assumption that the categorical variable containing the missing values has multinomial distribution. Values of the parameters of this distribution are tha
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
AO - Sociology, demography
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů