The surface stability and equilibrium crystal morphology of Ni2P nanoparticles and nanowires from an ab initio atomistic thermodynamic approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10325130" target="_blank" >RIV/00216208:11310/16:10325130 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1039/c6ce00584e" target="_blank" >http://dx.doi.org/10.1039/c6ce00584e</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c6ce00584e" target="_blank" >10.1039/c6ce00584e</a>
Alternative languages
Result language
angličtina
Original language name
The surface stability and equilibrium crystal morphology of Ni2P nanoparticles and nanowires from an ab initio atomistic thermodynamic approach
Original language description
Knowledge of the equilibrium crystal shape and structure of the exposed surfaces of nickel phosphide (Ni2P) nanostructures is essential for understanding and control of their catalytic performance. Ab initio atomistic thermodynamics was used to investigate computationally the effects of the experimental conditions (temperature, pressure, and chemical potentials) on the relative stabilities of low-Miller index surfaces and on the equilibrium crystal morphology of Ni2P nanoparticles and nanowires. The P-covered (0001)-Ni3P2 (denoted as (0001)-A-P) surface was found to be the most stable surface at a considerably wide range of chemical potentials, whereas the (0001)-A, (10 (1) over bar1)-Ni/P and (10 (1) over bar2)-Ni/P surfaces are the thermodynamically most favored phases just in narrow chemical potential regions. The theoretical equilibrium shapes and structures of the Ni2P nanoparticles and nanowires were obtained based on the Wulff construction at various chemical potentials. The morphology of the surfaces of the Ni2P nanoparticles and nanowires does depend on the chemical potential; thus, it can be tailored for particular applications by a suitable choice of experimental conditions. The (0001), (10 (1) over bar0) and (10 (1) over bar1) side facets dominate the nanoparticle surface in a wide range of chemical potentials but other side facets can also appear at particular ranges of chemical potentials. Results reported herein give new insight into the Ni2P nanoparticle morphology showing how it depends on the experimental conditions; this information can help to tailor the surface and shape of Ni2P nanoparticles for specific applications, e.g., in catalysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP106%2F12%2FG015" target="_blank" >GBP106/12/G015: Intelligent design of nanoporous adsorbents and catalysts</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CrystEngComm
ISSN
1466-8033
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
21
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
3808-3818
UT code for WoS article
000377085700008
EID of the result in the Scopus database
—