Thermodynamic equilibria in systems with nanoparticles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F17%3A43914660" target="_blank" >RIV/60461373:22310/17:43914660 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Thermodynamic equilibria in systems with nanoparticles
Original language description
Thermodynamic description of systems with nanoparticles in the frame of the Gibbs theory of interfaces is presented. Although much attention has been paid to thermodynamic modelling of nanosystems, the calculation of phase diagrams of nanoalloys as well as the assessment of effects of surface-related phenomena on the solubility of nanoparticles and gas?solid reactions, some discrepancy still remains dealing with the expression of the surface contribution to molar Gibbs energy and chemical potential of components. It is shown that due to the non-extensive nature of the surface area, these contributions are different for molar and partial molar quantities. The consistent expressions for molar Gibbs energy and chemical potentials of components of spherical nanoparticles are put forward along with the correct forms of equilibrium conditions. Moreover, the applicability of the shape factor a = Anon-spherical/Aspherical (Vnon-spherical = Vspherical) which is used in the expressions involving surface-to-volume ratio of nonspherical particles is addressed. A new parameter, the differential shape factor a? = dAnon-spherical/dAspherical (Vnon-spherical = Vspherical, dVnon-spherical = dVspherical), is proposed which should be used in equilibrium conditions based on the equality of chemical potentials. The enhanced solubility of paracetamol nanoparticles in water and thermal decomposition of GaN nanowires are demonstrated as examples of size effect in nanosystems.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA13-20507S" target="_blank" >GA13-20507S: Thin films of magnetically doped GaN</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Thermal Physics and Thermal Analysis: From Micro to Macro
ISBN
978-3-319-45899-1
Number of pages of the result
18
Pages from-to
385-402
Number of pages of the book
567
Publisher name
Springer International Publishing Switzerland
Place of publication
Cham
UT code for WoS chapter
—