Cytochrome b(5) impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b(5)/P450 reductase null (HBRN) mice
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10374570" target="_blank" >RIV/00216208:11310/18:10374570 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00204-018-2162-7" target="_blank" >http://dx.doi.org/10.1007/s00204-018-2162-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00204-018-2162-7" target="_blank" >10.1007/s00204-018-2162-7</a>
Alternative languages
Result language
angličtina
Original language name
Cytochrome b(5) impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b(5)/P450 reductase null (HBRN) mice
Original language description
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b(5) /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b(5) , which can also act as an electron donor from cytochrome b(5) reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N-2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N-2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N-2-BPDE) in vivo were significantly higher (similar to sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b(5) both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/GA17-12816S" target="_blank" >GA17-12816S: Construction of modified apoferritin nanocarriers bearing anticancer drugs and study of mechanisms enhancing their efficiency in anticancer therapy</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archives of Toxicology
ISSN
0340-5761
e-ISSN
—
Volume of the periodical
92
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1625-1638
UT code for WoS article
000429103700020
EID of the result in the Scopus database
2-s2.0-85040924525