The "Polyploid Hop": Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10388772" target="_blank" >RIV/00216208:11310/18:10388772 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3389/fevo.2018.00117" target="_blank" >https://doi.org/10.3389/fevo.2018.00117</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fevo.2018.00117" target="_blank" >10.3389/fevo.2018.00117</a>
Alternative languages
Result language
angličtina
Original language name
The "Polyploid Hop": Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications
Original language description
The duplication of an entire genome is no small affair. Whole genome duplication (WGD) is a dramatic mutation with long-lasting effects, yet it occurs repeatedly in all eukaryotic kingdoms. Plants are particularly rich in documented WGDs, with recent and ancient polyploidization events in all major extant lineages. However, challenges immediately following WGD, such as the maintenance of stable chromosome segregation or detrimental ecological interactions with diploid progenitors, commonly do not permit establishment of nascent polyploids. Despite these immediate issues some lineages nevertheless persist and thrive. In fact, ecological modeling commonly supports patterns of adaptive niche differentiation in polyploids, with young polyploids often invading new niches and leaving their diploid progenitors behind. In line with these observations of polyploid evolutionary success, recent work documents instant physiological consequences of WGD associated with increased dehydration stress tolerance in first-generation autotetraploids. Furthermore, population genetic theory predicts both short-and long-term benefits of polyploidy and new empirical data suggests that established polyploids may act as "sponges" accumulating adaptive allelic diversity. In addition to their increased genetic variability, introgression with other tetraploid lineages, diploid progenitors, or even other species, further increases the available pool of genetic variants to polyploids. Despite this, the evolutionary advantages of polyploidy are still questioned, and the debate over the idea of polyploidy as an evolutionary dead-end carries on. Here we broadly synthesize the newest empirical data moving this debate forward. Altogether, evidence suggests that if early barriers are overcome, WGD can offer instantaneous fitness advantages opening the way to a transformed fitness landscape by sampling a higher diversity of alleles, including some already preadapted to their local environment. This occurs in the context of intragenomic, population genomic, and physiological modifications that can, on occasion, offer an evolutionary edge. Yet in the long run, early advantages can turn into long-term hindrances, and without ecological drivers such as novel ecological niche availability or agricultural propagation, a restabilization of the genome via diploidization will begin the cycle anew.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
<a href="/en/project/GJ17-20357Y" target="_blank" >GJ17-20357Y: Parallel adaptation to alpine environments in wild Arabidopsis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Ecology and Evolution
ISSN
2296-701X
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
August
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
—
UT code for WoS article
000451797600001
EID of the result in the Scopus database
2-s2.0-85052876045