All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unexpected stability of a shallow lake ecosystem (Lake Komořany, Czech Republic) despite rapid climate change at the Late Glacial/Holocene boundary

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10389617" target="_blank" >RIV/00216208:11310/18:10389617 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.5281/zenodo.1287585" target="_blank" >https://doi.org/10.5281/zenodo.1287585</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5281/zenodo.1287585" target="_blank" >10.5281/zenodo.1287585</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unexpected stability of a shallow lake ecosystem (Lake Komořany, Czech Republic) despite rapid climate change at the Late Glacial/Holocene boundary

  • Original language description

    Sediments of central European lowland lakes are valuable, but little studied natural archives. The image of postglacial landscape development was mostly formed by study of alpine lake records. Our study investigated the response of a large shallow lake ecosystem (former Komorany Lake, 50.53°N, 13.53°E, surface area ~25 km2) to abrupt environmental changes at the Late Glacial/Holocene boundary. Sediment cores obtained in the 1980s by rescue sampling were subsampled and four bulk samples were selected for AMS radiocarbon dating. Analyses of biological variables (diatoms, chironomids, pollen) were accompanied by XRF and LOI. The agedepth model provided evidence for a continuous Late Glacial to early Holocene record, supported by the palynostratigraphy. The alkaliphilous tychoplanktonic diatom Staurosira dominated throughout the studied profile. They were, however, partly excluded from counting and analyses considering their low indicator value. Although algal productivity rose distinctly with amelioration of climate conditions at the start of the Holocene, no remarkable change in diatom species composition was observed. The only significant changes in the diatom and chironomid assemblages occurred slightly before the onset of the Holocene: the tychoplanktonic diatom Staurosira venter that dominated the basal part of the profile was replaced by Staurosira construens. The abundance of Chironomus plumosus-type and Chironomus anthracinus-type decreased and Procladius, Einfeldia dissidens/natchitocheae and Glyptotendipes pallens-type were established. Palynological data indicatedthe presence of aquatic macrophytes since the Late Glacial. Our results suggest very consistent in-lake conditions, with high nutrient availability that enabled the aquatic community to maintain a stable structure at the Late Glacial/Holocene boundary. The trophic status even decreased slightly in the Holocene. During the Late Glacial/Holocene transition the eutrophic lakes likely represented very stable ecosystems despite drastic changes in the surrounding landscape.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/GA16-06915S" target="_blank" >GA16-06915S: Holocene disturbance dynamics in European Picea abies (Norway spruce) forests: Implications for conservation and management</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů