All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10420699" target="_blank" >RIV/00216208:11310/19:10420699 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=i0yL9HPFM7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=i0yL9HPFM7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c9ta10184e" target="_blank" >10.1039/c9ta10184e</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage

  • Original language description

    Exploring advanced electrode materials with simultaneous efficient lithium and sodium ion storage is highly desired but remains a considerable challenge mainly due to the significant difference of lithium and sodium ion sizes. Transition metal sulfides (TMSs) have shown great potential in lithium/sodium ion batteries (LIBs/SIBs), however, they still face the critical issues of poor electrical conductivity, sluggish ion diffusion, huge volume expansion and agglomeration of highly reactive nano-metal products. Herein, we deliberately design a multiple-scale nanostructured and flexible anode by a facile one-step sulfidation strategy, in which ultrafine metal sulfide nanocrystals are isolated and protected by porous nitrogen-doped carbon nanospheres (PNC) and then encapsulated into three-dimensional graphene microsheets (3DG). It can effectively eliminate the above issues of TMSs, which makes them a very promising candidate for both LIBs and SIBs for the first time. Thus, the resultant FeS2/PNC@3DG anode delivers ultrahigh reversible capacities (1208 mA h g(-1) for LIBs and 597 mA h g(-1) for SIBs at 0.2 A g(-1)), excellent rate capabilities (829 mA h g(-1) for LIBs and 316 mA h g(-1) for SIBs at 5 A g(-1)), and superior long-term cycling performance with a capacity retention of 94.2% for LIBs and 85.2% for SIBs, which has rarely been achieved in previously reported various anodes. Moreover, its highly efficient Li+/Na+ storage mechanisms are systematically investigated by reaction kinetics analysis and density functional theory calculations, which further provide important insights into the development of high-performance energy storage materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Materials Chemistry A

  • ISSN

    2050-7488

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    46

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    26342-26350

  • UT code for WoS article

    000501213600013

  • EID of the result in the Scopus database

    2-s2.0-85075828175