All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improved Electrochemical Performance of NTs-WS2@C Nanocomposites for Lithium-Ion and Sodium-Ion Batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924198" target="_blank" >RIV/60461373:22310/22:43924198 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/full/10.1021/acsami.2c06295" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acsami.2c06295</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.2c06295" target="_blank" >10.1021/acsami.2c06295</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improved Electrochemical Performance of NTs-WS2@C Nanocomposites for Lithium-Ion and Sodium-Ion Batteries

  • Original language description

    Even though WS2nanotubes (NTs-WS2) have great potential as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) thanks to their unusual layered structure, their conductivity and cycling stability are far from satisfactory. To tackle these issues, carbon-coated WS2(NTs-WS2@C) nanocomposites were prepared through a facile synthesis method that involved precipitating a carbon precursor (20% sucrose) on WS2nanotubes, followed by annealing treatment under an argon environment. Thanks to the presence of highly conductive and mechanically robust carbon on the outer surface, NTs-WS2@C nanocomposites show improved electrochemical performance compared with bare NTs-WS2. After 60 cycles at 80 mA g-1current density, the cells display high capacities of 305 mAh g-1in LIBs and 152 mAh g-1in SIBs, respectively. As the current density increases to 600 mA g-1, it provides specific capacities of 209 and 115 mAh g-1, correspondingly. The enhanced electrochemical performance in LIBs and SIBs is primarily attributed to the synergistic effects of the tubular architecture of WS2, carbon network and stable nanocomposite structure, which can effectively constrain volume variation during the metal ions intercalation/deintercalation processes. © 2022 American Chemical Society. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GC20-16124J" target="_blank" >GC20-16124J: Two-dimensional layered transition metal dichalcogenides/ nanostructured carbons composites for electrochemical energy storage and conversion</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

    1944-8252

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    41

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    46386-46400

  • UT code for WoS article

    000877044400001

  • EID of the result in the Scopus database

    2-s2.0-85139550505