Interface Engineering between the Metal-Organic Framework Nanocrystal and Graphene toward Ultrahigh Potassium-Ion Storage Performance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10419525" target="_blank" >RIV/00216208:11310/20:10419525 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cWzeol4qeT" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cWzeol4qeT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsnano.0c03488" target="_blank" >10.1021/acsnano.0c03488</a>
Alternative languages
Result language
angličtina
Original language name
Interface Engineering between the Metal-Organic Framework Nanocrystal and Graphene toward Ultrahigh Potassium-Ion Storage Performance
Original language description
The potassium-ion battery (PIB) has been recognized as a promising low-cost and high-energy battery; however, it suffers from a relatively low capacity and inferior cycling performance compared with current electrode materials. Herein, we report an effective interface engineering strategy to prepare metal-organic framework (MOF) nanocrystals tightly encapsulated by reduced graphene oxide (rGO) via strong chemical interaction as a free-standing anode for PIB. Based on experimental analysis and theoretical calculations, we systematically investigated the effect of the chemical-bonded interface between MOF nanocrystals and conductive rGO and revealed that the strong chemical interface can substantially enhance the adsorption energy and ion transport kinetics of the potassium ion within the MOF nanocrystals compared to the physical mixture of MOF and rGO with almost the same microscopic morphologies. As a result, such an MOF-rGO hybrid with strong interfacial chemical couplings delivered an ultrahigh reversible capacity of 422 mAh g(-1) at 0.1 A g(-1), superior rate performance (202 mAh g(-1) at 5 A g(-1)), and outstanding long-term cycling performance (an ultralow decay rate of 0.013% per cycle after 2000 cycles at 2 A g(-1)), which are not only significantly better than those of the physical mixture of MOF/rGO but also among the best for anodes for PIB reported thus far.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Nano
ISSN
1936-0851
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
10210-10218
UT code for WoS article
000566341000080
EID of the result in the Scopus database
2-s2.0-85090077522