All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Giant Magnetoresistance in 2D Van der Waals Molecular Magnetic Tunnel Junctions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10436574" target="_blank" >RIV/00216208:11310/21:10436574 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TTeq-WeQns" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=TTeq-WeQns</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.1c10673" target="_blank" >10.1021/acsami.1c10673</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Giant Magnetoresistance in 2D Van der Waals Molecular Magnetic Tunnel Junctions

  • Original language description

    The spin transport across a zero-dimensional (0D) single-molecule sandwiched by two-dimensional (2D) van der Waals (vdW) ferromagnetic electrodes may open vast opportunities to create novel mixed-dimensional spintronics devices. However, this remains unexplored yet. Inspired by the recent discovery of 2D intrinsic ferromagnets Fe3GeTe2, using first-principles spin transport calculations, we show that single-molecule junctions based on Fe3GeTe2 can yield perfect spin filtering and a significant magnetoresistance (MR) of up to similar to 6075%. This remarkable MR is more than 2 orders of magnitude higher than the MR obtained for the corresponding junctions with conventional ferromagnetic metals (e.g., Ni, Fe, and Co). We demonstrate the results of two representative examples that are feasible in the experiments: (i) A benzene or (ii) bezenedithiol (BDT) connected either through a scanning tunneling microscope or break-junction setups. We find that the conductance of BDT junctions is more than 10 times larger than that of the benzene junction due to a much stronger hybridization effect at the molecule-metal interfaces. The key mechanism of the perfect spin filtering and large MR in single-molecule junctions is mainly determined by the intrinsic properties of Fe3GeTe2 electrodes, while the actual conductance is determined by the hybridization strength of the majority spin channel at the molecule-metal interfaces. It is also predicted that the perfect spin filtering and the remarkably huge MR are highly insensitive to structural variations, interface defects, and stacking orders of the electrodes. Our results provide important insights for expanding molecular spintronics platforms from conventional ferromagnetic metals to new 2D vdw magnets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials &amp; Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    30

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    36098-36105

  • UT code for WoS article

    000683741400082

  • EID of the result in the Scopus database

    2-s2.0-85112304611