All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolution of dosage compensation does not depend on genomic background

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10439334" target="_blank" >RIV/00216208:11310/21:10439334 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bhpi5.e4o6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bhpi5.e4o6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/mec.15853" target="_blank" >10.1111/mec.15853</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolution of dosage compensation does not depend on genomic background

  • Original language description

    Organisms have evolved various mechanisms to cope with the differences in the gene copy numbers between sexes caused by degeneration of Y and W sex chromosomes. Complete dosage compensation or at least expression balance between sexes has been reported predominantly in XX/XY systems, but rarely in ZZ/ZW systems. However, this often-reported pattern is based on comparisons of lineages where sex chromosomes evolved from nonhomologous genomic regions, potentially differing in sensitivity to differences in gene copy numbers. Here we document that two reptilian lineages (XX/XY iguanas and ZZ/ZW softshell turtles), which independently co-opted the same ancestral genomic region for the function of sex chromosomes, evolved different gene dose regulatory mechanisms. The independent co-option of the same genomic region for the role of sex chromosomes as in the iguanas and the softshell turtles offers great opportunity for testing evolutionary scenarios on sex chromosome evolution under the explicit control of the genomic background and gene identity. We show that the parallel loss of functional genes from the Y chromosome of the green anole and the W chromosome of the Florida softshell turtle led to different dosage compensation mechanisms. Our approach controlling for genetic background thus does not support that the variability in the regulation of gene dose differences is a consequence of ancestral autosomal gene content.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Result continuities

  • Project

    <a href="/en/project/GA17-22604S" target="_blank" >GA17-22604S: The lizard perspective on mammalian sex chromosomes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecular Ecology

  • ISSN

    0962-1083

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1836-1845

  • UT code for WoS article

    000626129200001

  • EID of the result in the Scopus database

    2-s2.0-85102186273