All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of Microplastic-Associated Biofilm Development along a Freshwater-Estuarine Gradient

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10439457" target="_blank" >RIV/00216208:11310/21:10439457 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E3oSIiz4xY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E3oSIiz4xY</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.est.1c04108" target="_blank" >10.1021/acs.est.1c04108</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of Microplastic-Associated Biofilm Development along a Freshwater-Estuarine Gradient

  • Original language description

    Microplastic contamination is an increasing concern worldwide. Biofilms rapidly develop on surfaces in aquatic habitats, but the processes of biofilm formation and variation in bacterial community succession on different microplastics introduced into freshwater and estuarine environments are not well understood. In this study, the biofilm bacterial communities that developed on three different types of microplastics that are prevalent in the environment, high-density polyethylene (HDPE), polyethylene terephthalate (PET), and polystyrene (PS), was investigated. Virgin microplastics were incubated in microcosms over a period of 31 days with water collected along a freshwater-estuarine gradient of the Raritan River in New Jersey. Through long-read MinION sequencing of bacterial ribosomal operons, we were able to examine biofilm bacterial communities at a species- and strain-level resolution. Results indicated that both salinity level and microplastic type impacted biofilm formation and promoted colonization by distinct microbial communities. Limnobacter thiooxidans was found to be one of the most abundant microplastics colonizing-bacteria, and it is hypothesized that different types of microplastics could select for different strains. Our findings indicate that multiple groups of highly similar L. thiooxidans rRNA operons could be discerned within the community profiles. Phylogenetic reconstruction further established that various Linmobacter species uniquely colonized the different microplastics from the different sampling sites. Our findings indicate that microplastics support abundant and diverse bacterial communities and that the various types of microplastics can influence how different bacterial biofilms develop, which may have ecological impacts on aquatic ecosystems. (C) 2021 American Chemical Society

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10613 - Zoology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Science and Technology

  • ISSN

    0013-936X

  • e-ISSN

    1520-5851

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    16402-16412

  • UT code for WoS article

    000759471400014

  • EID of the result in the Scopus database

    2-s2.0-85120882529