All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146316" target="_blank" >RIV/00216305:26210/23:PU146316 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081731:_____/23:00565479

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0045653522038668" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045653522038668</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2022.137373" target="_blank" >10.1016/j.chemosphere.2022.137373</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm

  • Original language description

    Microplastics found in the environment are often covered with a biofilm, which makes their analysis difficult. Therefore, the biofilm is usually removed before analysis, which may affect the microplastic particles or lead to their loss during the procedure. In this work, we used laser-based analytical techniques and evaluated their performance in detecting, characterizing, and classifying pristine and aged microplastics with a developed biofilm. Five types of microplastics from different polymers were selected (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polyvinyl chloride) and aged under controlled conditions in freshwater and wastewater. The development of biofilm and the changes in the properties of the microplastic were evaluated. The pristine and aged microplastics were characterized by standard methods (e.g., optical and scanning electron microscopy, and Raman spectroscopy), and then laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used. The results show that LIBS could identify different types of plastics regardless of the ageing and major biotic elements of the biofilm layer. LA-ICP-MS showed a high sensitivity to metals, which can be used as markers for various plastics. In addition, LA-ICP-MS can be employed in studies to monitor the adsorption and desorption (leaching) of metals during the ageing of microplastics. The use of these laser-based analytical techniques was found to be beneficial in the study of environmentally relevant microplastics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

    <a href="/en/project/GJ20-19526Y" target="_blank" >GJ20-19526Y: Processes of the laser ablation of soft tissues and consequent laser-induced plasma formation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHEMOSPHERE

  • ISSN

    0045-6535

  • e-ISSN

    1879-1298

  • Volume of the periodical

    313

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000906764700001

  • EID of the result in the Scopus database

    2-s2.0-85143309858