Monolayer PC3: A promising material for environmentally toxic nitrogen-containing multi gases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10436577" target="_blank" >RIV/00216208:11310/22:10436577 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=do9_ccn6I2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=do9_ccn6I2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhazmat.2021.126761" target="_blank" >10.1016/j.jhazmat.2021.126761</a>
Alternative languages
Result language
angličtina
Original language name
Monolayer PC3: A promising material for environmentally toxic nitrogen-containing multi gases
Original language description
Carbon and its analogous nanomaterials are beneficial for toxic gas sensors since they are used to increase the electrochemically active surface region and improve the transmission of electrons. The present article addresses a detailed investigation on the potential of the monolayer PC3 compound as a possible sensor material for environmentally toxic nitrogen-containing gases (NCGs), namely NH3, NO, and NO2. The entire work is carried out under the frameworks of density functional theory, ab-initio molecular dynamics simulations, and non-equilibrium Green's function approaches. The monolayer-gas interactions are studied with the van der Waals dispersion correction. The stability of pristine monolayer PC3 is confirmed through dynamical, mechanical, and thermal analyses. The mobility and relaxation time of 2D PC3 sensor material with NCGs are obtained in the range of 10(1)-10(4) cm(2) V(-1) s(-1) and 10(1)-10(3) fs for armchair and zigzag directions, respectively. Out of six possible adsorption sites for toxic gases on the PC3 surface, the most prominent site is identified with the highest adsorption energy for all the NCGs. Considering the most stable configuration site of the NCGs, we have obtained relevant electronic properties by utilizing the band unfolding technique. The considerable adsorption energies are obtained for NO and NO2 compared to NH3. Although physisorption is observed for all the NCGs on the PC3 surface, NO2 is found to convert into NO and O at 5.05 ps (at 300 K) under molecular dynamics simulation. The maximum charge transfer (0.31e) and work function (5.17 eV) are observed for the NO2 gas molecule in the series. Along with the considerable adsorption energies for NO and NO2 gas molecules, their shorter recovery time (0.071 s and 0.037 s, respectively) from the PC3 surface also identifies 2D PC3 as a promising sensor material for those environmentally toxic gases. The experimental viability and actual implications for PC3 monolayer as NCGs sensor material are also confirmed by examining the humidity effect and transport properties with modeled sensor devices. The transport properties (I-V characteristics) reflect the significant sensitivity of PC3 monolayer toward NO and NO2 molecules. These results certainly confirm PC3 monolayer as a promising sensor material for NO and NO2 NCG molecules.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Hazardous Materials
ISSN
0304-3894
e-ISSN
1873-3336
Volume of the periodical
422
Issue of the periodical within the volume
January
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
126761
UT code for WoS article
000696955100006
EID of the result in the Scopus database
2-s2.0-85112813869