Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10454601" target="_blank" >RIV/00216208:11310/22:10454601 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EGzMb.1VZy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=EGzMb.1VZy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cattod.2021.10.004" target="_blank" >10.1016/j.cattod.2021.10.004</a>
Alternative languages
Result language
angličtina
Original language name
Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution
Original language description
Layered zeolites, especially MWW, have been used to synthesize pillared micro/mesoporous hybrids with the goal to enhance catalytic activity towards larger molecules. The critical preparation step is expansion of the interlayer space by swelling with cationic surfactants at high pH. Recently reported solutions of MWW mono layers, obtained by exfoliation of the zeolite MCM-56, can be used to prepare analogous materials by flocculation (precipitation) with surfactant solutions. This previously unavailable approach is studied in this work with both high pH (0.2 M, pH > 13.3) and lower pH (0.01 M, pH~12) solutions, and resulted in finding conditions for preparation of catalysts that can be more active than pure microporous layers (zeolite) despite large content of unreactive silica pillars. Both the high and low pH conditions afforded similar expanded surfactant-MWW composites, but their behavior differed during pillaring with TEOS. Well-defined expanded interlayer distances indicated by a low angle reflection in XRD above 3 nm d-spacing was observed only with the high alkalinity preparations. An additional benefit was observed with TEOS treatment in the presence of isopropyl alcohol leading to a product showing high catalytic activity in model alkylation reaction (mesitylene with benzyl alcohol) proceeding faster than with the pure zeolite. The products obtained under different conditions were characterized by textural methods, nitrogen adsorption and QE-TPDA, and FT-IR to investigate acid site parameters. Notably, the MCM-56 used in this work was prepared with addition of aniline as the structure promoting agent and is the second formulation affording exfoliable MWW materials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Catalysis Today
ISSN
0920-5861
e-ISSN
1873-4308
Volume of the periodical
390-391
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
272-280
UT code for WoS article
000783099900003
EID of the result in the Scopus database
2-s2.0-85118343813