An incremental facility location clustering with a new hybrid constrained pseudometric
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10425607" target="_blank" >RIV/00216208:11310/23:10425607 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10425607 RIV/49777513:23520/23:43969884
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8Ufb9qYPDz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8Ufb9qYPDz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2023.109520" target="_blank" >10.1016/j.patcog.2023.109520</a>
Alternative languages
Result language
angličtina
Original language name
An incremental facility location clustering with a new hybrid constrained pseudometric
Original language description
The Euclidean metric, one of the classical similarity measures applied in clustering algorithms, has drawbacks when applied to spatial clustering. The resulting clusters are spherical and similarly sized, and the edges of objects are considerably smoothed. This paper proposes a novel hybrid constrained pseudometric formed by the linear combination of the Euclidean metric and a pseudometric plus penalty. The pseudometric is used in a new deterministic incremental heuristic facility location algorithm (IHFL). Our method generates larger, isotropic, and partially overlapping clusters of different sizes and spatial densities, better adapting to the surface complexity than the classical non-deterministic clustering. Cluster properties are used to derive new features for supervised/unsupervised learning. Possible applications are the classification of point clouds, their simplification, detection, filtering, and extraction of different structural patterns or sampled objects. Experiments were run on point clouds derived from laser scanning and images.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition
ISSN
0031-3203
e-ISSN
1873-5142
Volume of the periodical
141
Issue of the periodical within the volume
September
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
109520
UT code for WoS article
000992216400001
EID of the result in the Scopus database
2-s2.0-85153671852