All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An incremental facility location clustering with a new hybrid constrained pseudometric

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10425607" target="_blank" >RIV/00216208:11310/23:10425607 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10425607 RIV/49777513:23520/23:43969884

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8Ufb9qYPDz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8Ufb9qYPDz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.patcog.2023.109520" target="_blank" >10.1016/j.patcog.2023.109520</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An incremental facility location clustering with a new hybrid constrained pseudometric

  • Original language description

    The Euclidean metric, one of the classical similarity measures applied in clustering algorithms, has drawbacks when applied to spatial clustering. The resulting clusters are spherical and similarly sized, and the edges of objects are considerably smoothed. This paper proposes a novel hybrid constrained pseudometric formed by the linear combination of the Euclidean metric and a pseudometric plus penalty. The pseudometric is used in a new deterministic incremental heuristic facility location algorithm (IHFL). Our method generates larger, isotropic, and partially overlapping clusters of different sizes and spatial densities, better adapting to the surface complexity than the classical non-deterministic clustering. Cluster properties are used to derive new features for supervised/unsupervised learning. Possible applications are the classification of point clouds, their simplification, detection, filtering, and extraction of different structural patterns or sampled objects. Experiments were run on point clouds derived from laser scanning and images.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pattern Recognition

  • ISSN

    0031-3203

  • e-ISSN

    1873-5142

  • Volume of the periodical

    141

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    109520

  • UT code for WoS article

    000992216400001

  • EID of the result in the Scopus database

    2-s2.0-85153671852