Evolution of the theoretical description of the isoelectric focusing experiment: I. The path from Svensson's steady-state model to the current two-stage model of isoelectric focusing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10471108" target="_blank" >RIV/00216208:11310/23:10471108 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uuf8~JGY0o" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uuf8~JGY0o</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/elps.202200236" target="_blank" >10.1002/elps.202200236</a>
Alternative languages
Result language
angličtina
Original language name
Evolution of the theoretical description of the isoelectric focusing experiment: I. The path from Svensson's steady-state model to the current two-stage model of isoelectric focusing
Original language description
In 1961, Svensson described isoelectric focusing (IEF), the separation of ampholytic compounds in a stationary, natural pH gradient that was formed by passing current through a sucrose density gradient-stabilized ampholyte mixture in a constant cross-section apparatus, free of mixing. Stable pH gradients were formed as the electrophoretic transport built up a series of isoelectric ampholyte zones-the concentration of which decreased with their distance from the electrodes-and a diffusive flux which balanced the generating electrophoretic flux. When polyacrylamide gel replaced the sucrose density gradient as the stabilizing medium, the spatial and temporal stability of Svensson's pH gradient became lost, igniting a search for the explanation and mitigation of the loss. Over time, through a series of insightful suggestions, the currently held notion emerged that in the modern IEF experiment-where the carrier ampholyte (CA) mixture is placed between the anolyte- and catholyte-containing large-volume electrode vessels (open-system IEF)-a two-stage process operates that comprises a rapid first phase during which a linear pH gradient develops, and a subsequent slow, second stage, during which the pH gradient decays as isotachophoretic processes move the extreme pI CAs into the electrode vessels. Here we trace the development of the two-stage IEF model using quotes from the original publications and point out critical results that the IEF community should have embraced but missed. This manuscript sets the foundation for the companion papers, Parts 2 and 3, in which an alternative model, transient bidirectional isotachophoresis is presented to describe the open-system IEF experiment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA18-11776S" target="_blank" >GA18-11776S: Advanced theoretical and software tools for electrophoresis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrophoresis
ISSN
0173-0835
e-ISSN
1522-2683
Volume of the periodical
44
Issue of the periodical within the volume
7-8
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
667-674
UT code for WoS article
000921418400001
EID of the result in the Scopus database
2-s2.0-85146464679