All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ethanol and NaCl-Induced Gold Nanoparticle Aggregation Toxicity toward DNA Investigated with a DNA/GCE Biosensor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10472887" target="_blank" >RIV/00216208:11310/23:10472887 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.rjSPmwvyt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.rjSPmwvyt</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s23073425" target="_blank" >10.3390/s23073425</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ethanol and NaCl-Induced Gold Nanoparticle Aggregation Toxicity toward DNA Investigated with a DNA/GCE Biosensor

  • Original language description

    Engineered nanomaterials are becoming increasingly common in commercial and consumer products and pose a serious toxicological threat. Exposure of human organisms to nanomaterials can occur by inhalation, oral intake, or dermal transport. Together with the consumption of alcohol in the physiological environment of the body containing NaCl, this has raised concerns about the potentially harmful effects of ingested nanomaterials on human health. Although gold nanoparticles (AuNPs) exhibit great potential for various biomedical applications, there is some inconsistency in the case of the unambiguous genotoxicity of AuNPs due to differences in their shape, size, solubility, and exposure time. A DNA/GCE (DNA/glassy carbon electrode) biosensor was used to study ethanol (EtOH) and NaCl-induced gold nanoparticle aggregation genotoxicity under UV light in this study. The genotoxic effect of dispersed and aggregated negatively charged gold nanoparticles AuNP1 (8 nm) and AuNP2 (30 nm) toward salmon sperm double-stranded dsDNA was monitored by cyclic and square-wave voltammetry (CV, SWV). Electrochemical impedance spectroscopy (EIS) was used for a surface study of the biosensor. The aggregation of AuNPs was monitored by UV-vis spectroscopy. AuNP1 aggregates formed by 30% v/v EtOH and 0.15 mol.L(-1) NaCl caused the greatest damage to the biosensor DNA layer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

    1424-8220

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    3425

  • UT code for WoS article

    000970283800001

  • EID of the result in the Scopus database

    2-s2.0-85152346985