All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface fertilisation and organic matter delivery enhanced carbonate dissolution in the western South Atlantic

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10475679" target="_blank" >RIV/00216208:11310/23:10475679 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W6tpiScdTR" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W6tpiScdTR</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fevo.2023.1238334" target="_blank" >10.3389/fevo.2023.1238334</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface fertilisation and organic matter delivery enhanced carbonate dissolution in the western South Atlantic

  • Original language description

    The last glacial inception was characterised by rapid changes in temperature, atmospheric pCO(2), and changes in the water mass geometry of the major ocean basins. Although several climatic feedback mechanisms have been proposed to explain the glacial/interglacial cycles witnessed in the Quaternary, the exact mechanistic responses of these processes are still under constrained. In this study we use proxies including planktonic foraminifera compositional assemblages and oxygen stable isotopes to reconstruct past changes in sea surface productivity, stratification, and carbonate dissolution. We use core SIS-249 (2,091 mbsl, western South Atlantic 30 degrees S 47 degrees W), spanning 30-110 thousand years ago (ka), and currently bathed by modern Northern Component Water. We test existing hypotheses suggesting that the orbital obliquity cycle modulates the biological pump in the study area. Spectral analysis run on our synthesised productivity proxies recognises a similar to 43 kyr-cycle, related to the obliquity cycle. We propose that the enhanced productivity is produced by two mechanisms: i) the glacial upwelling of subsurface nutrient-rich waters and, ii) the continental (wind-driven dust and riverine outflows) fertilisation of the photic zone, with the latter process being obliquity-paced. We also suggest that not only the increased organic matter export but also a change in its bioavailability (from refractory to labile) led to calcium carbonate dissolution, as the degradation of the more soluble organic matter decreased the pH of the glacial bottom water, partially dissolving the calcium carbonate. Although our correlation analyses show a strong benthic-pelagic coupling through the relation between the enhanced biological pump and carbonate dissolution (rho&lt;0.05, r=0.80), we cannot reject the potential of corrosive Southern Component Water bathing the site during the glacial. Finally, we highlight that these processes are not mutually exclusive and that both can be modulated by the obliquity cycle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Ecology and Evolution

  • ISSN

    2296-701X

  • e-ISSN

    2296-701X

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1238334

  • UT code for WoS article

    001105255900001

  • EID of the result in the Scopus database

    2-s2.0-85177225274