All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10490628" target="_blank" >RIV/00216208:11310/24:10490628 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DxAy-zU28p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DxAy-zU28p</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/aob/mcae096" target="_blank" >10.1093/aob/mcae096</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow

  • Original language description

    Background: Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species.Scope: Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented.Conclusions: The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/GA20-22783S" target="_blank" >GA20-22783S: Genome duplication as an imperfect barrier in speciation? Evolutionary drivers and consequences of inter-ploidy introgression in natural populations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Botany

  • ISSN

    0305-7364

  • e-ISSN

    1095-8290

  • Volume of the periodical

    134

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    537-550

  • UT code for WoS article

    001274937100001

  • EID of the result in the Scopus database

    2-s2.0-85199255436