A lower bound on the size of Lipschitz subsets in dimension 3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F03%3A00002629" target="_blank" >RIV/00216208:11320/03:00002629 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A lower bound on the size of Lipschitz subsets in dimension 3
Original language description
We prove: Any n-point set in R^3 has a subset of substantially more than n^{1/2} points 3-Lipschitz in some coordinate. A set S is C-Lipschitz in the z-coordinate if |z(a)-z(b)| < C max(|x(a)-x(b)|,|y(a)-y(b)|) for every a,b in S.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LN00A056" target="_blank" >LN00A056: Institute of Theoretical Computer Science (Center of Young Science)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics Probability and Computing
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
-
Country of publishing house
GB - UNITED KINGDOM
Number of pages
4
Pages from-to
427-430
UT code for WoS article
—
EID of the result in the Scopus database
—