All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogeneous geodesics on solvable Lie groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F03%3A00002856" target="_blank" >RIV/00216208:11320/03:00002856 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogeneous geodesics on solvable Lie groups

  • Original language description

    Homogeneous geodesics are studied on an infinite series of Riemannian group spaces and it is shown that the number of mutually orthogonal homogeneous geodesics is closely connected with an open Hadamard problem (from combinatorics).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F02%2F0616" target="_blank" >GA201/02/0616: Computer-assisted research in differential geometry and applications</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2003

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Hungarica

  • ISSN

    0236-5294

  • e-ISSN

  • Volume of the periodical

    101

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    10

  • Pages from-to

    313-322

  • UT code for WoS article

  • EID of the result in the Scopus database