Homogeneous Geodesics in Homogeneous Affine Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206804" target="_blank" >RIV/00216208:11320/09:00206804 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Homogeneous Geodesics in Homogeneous Affine Manifolds
Original language description
For studying homogeneous geodesics in Riemannian and pseudo- Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula. In the affine differential geometry, there is not such an universal formula. In the present paper, wepropose a simple method of investigation of affine homogeneous geodesics. As an application, we prove, among others, the existence of homogeneous geodesics for all homogeneous affine manifolds in dimension 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
neuvedeno
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
—
UT code for WoS article
000268904700004
EID of the result in the Scopus database
—