All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogeneous Geodesics in Homogeneous Affine Manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206804" target="_blank" >RIV/00216208:11320/09:00206804 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogeneous Geodesics in Homogeneous Affine Manifolds

  • Original language description

    For studying homogeneous geodesics in Riemannian and pseudo- Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula. In the affine differential geometry, there is not such an universal formula. In the present paper, wepropose a simple method of investigation of affine homogeneous geodesics. As an application, we prove, among others, the existence of homogeneous geodesics for all homogeneous affine manifolds in dimension 2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    neuvedeno

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000268904700004

  • EID of the result in the Scopus database