All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099173" target="_blank" >RIV/00216208:11320/11:10099173 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/11:33116728

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds

  • Original language description

    For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connectionson the examples of 3-dimensional Lie groups.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

  • ISSN

    0231-9721

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    13

  • Pages from-to

    29-42

  • UT code for WoS article

  • EID of the result in the Scopus database