All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Filling analytic sets by the derivatives of C1-smooth bumps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00001277" target="_blank" >RIV/00216208:11320/05:00001277 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/05:00022886

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Filling analytic sets by the derivatives of C1-smooth bumps

  • Original language description

    If X is an infinite-dimensional Banach space, with separable dual, and M is an analytic subset of X* such that any point can be reached from 0 by a continuous path contained (except for the point itself) in the interior of M, then M is the range of the derivative of a C1-smooth function on X with bounded nonempty support.

  • Czech name

    Vyplňování analytických množin derivacemi C1 bumpů

  • Czech description

    Je-li X Banachův prostor se separabilním duálem a M analytická podmnožina X*, jejíž každý bod lze spojit s 0 spojitou křivkou, která je (až na koncový bod) obsažena ve vnitřku M, pak M je obor hodnot derivace C1 funkce na X s omezeným neprázdným nosičem.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    133

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    295-303

  • UT code for WoS article

  • EID of the result in the Scopus database